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A V E R A G I N G  OF A N  O R T H O T R O P I C  E L A S T I C  P L A T E  W E A K E N E D  

B Y  P E R I O D I C  H I N G E S  O F  F I N I T E  S T I F F N E S S  

Yu. A. Bogan UDC 539.3 

A formal asymptote of a solution of the title problem is constructed using the averaging method 
of N. S. Bakhvalov. The averaged equation is of an elliptic type; for small stiffness of the hinge, 
it is singularly perturbed, and for zero stiffness of the hinge, it is of a composite type. For the 
first boundary-value problem, a solution of the original problem is proved to converge to that 
of the limiting problem. A situation where natural boundary conditions are specified for the 
composite equation is treated. It is shown that the solution space of the homogeneous problem 
is infinite-dimensional. 

I n t r o d u c t i o n .  A formal asymptote of a solution of the title problem is obtained using the averaging 
method proposed by Bakhvalov [1]. Many problems have been solved by this method under the assumption 
that  the contact between the component materials is ideal; studies in which the contact was not ideal are 
much fewer. Lene and Leguillon [2] studied the averaging problem of the theory of elasticity for a composite 
material in the case where viscous friction occurs in an elementary cell at the interface between the fiber and 
matrix. Assuming zero stiffness of the periodic hinges, Andrianov et al. [3] derived an averaged equation of a 
composite type for a particular case. It should be noted that  the conjugation conditions in [3] were incorrect, 
namely, the requirement of zero j ump  in the transverse shear force was not formulated. Below, it is shown that  
averaging of a plate weakened by hinges of finite stiffness leads to an elliptic equation; for small stiffness of 
the hinge, this equation is singularly perturbed, and for zero stiffness of the hinges, it is of a composite type. 
Similar equations were treated in previous papers of the author (see, for instance, [4]). For the first boundary- 
value problem, a solution of the original problem is proved to converge to that  of the limiting problem. A 
situation where the natural boundary conditions are specified for an equation of the composite type has been 
studied. It is shown that ,  in contrast to the elliptic case, the solution space of the homogeneous problem is 
infinite-dimensional. 

1. We assume that  the intersection of a planar domain Q by the x axis is a segment [0, l]. Here (x, y) are 
orthogonal Cartesian coordinates in the plane. We divide the segment [0, l] into n equal parts and set e = I/n. 
If n is large, e is a small parameter.  As a result, the periodic cell coincides with the segment [0, 1]. Using the 
Kirchhoff-Love hypotheses, we write the relations between the moments and curvatures for an orthotropic 
material in the form 

/ 02W _ 02W'~ / 02W _ 02W ~, 02W 
------ D22-O-fiy2 ) ,  M12 -2D66 0zOy. 

Here w(x, y) is the deflection (the assumption that  the material is orthotropic is used only to simplify the 
formulas; subsequent calculations can be performed without this assumption), Dij = Dij(x/r (i,j = 1, 2, 6) 
are functions of the fast variable r/--- x/r that have a period equal to unity. Moreover, we assume that  there is 
a positive constant 3' such that  the following inequalities (the condition of a positive definite stiffness matrix) 

Lavrent 'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 168-174, May- 
June, 1999. Original article submit ted  April 28, 1997. 

0021-8944/99/4003-0507 $22.00 (~) 1999 Kluwer Academic/Plenum Publishers 507 



hold: 

DUD22 - D122 > '7 > 0, D66 > '7 > 0. 

The deflection is determined from the equation 

82 82w 82w'~ 82 (D 82w _ 82w'\ 02 I 8 2 w \  
--~x2x2(D11"~x2+D128y2 ] ~y2 k 12~2"x2 + - 4 o-;D-; Cvoo ) : s. D22~y2 ) (1.1) 

We specify the following conjugation conditions for r / =  1/2: 

- M n ( x , y , 1 / 2  t O ) =  afSw] [Sx] -Mu(z,y,1/2-O) = a [Sw].  (1.2) 
' ~ L S x ] '  

[w] = 0, [Nll] = 0. (1.3) 

Conditions (1.3) imply that  the deflection and transverse shear force Nu = - S M u / S x  - 8M12/Sy are 
continuous across the boundary. We assume that the periodic cell of the straight line 7 = 1/2 is divided into 
two layers, whose mechanical characteristics can be the same. The coefficient a is positive and is called the 
stiffness of the hinge [1]. Henceforth, square brackets in formulas designate a jump of the function for 7 = 1/2. 
We seek an asymptote  of the solution in the form 

O0 

w~= E e a w ' Z ( x , y , 1 7 )  �9 (1.4) 
n-~.O 

The partial derivative 8/8x in (1.1) is replaced by the total derivative 

d 8 1 8  
dx cox r 87' 

since we differentiate a composite function. Moreover, the second derivative with respect to x is written as 

d 2 82 2 82 1 82 

dx 2 -  8z--- ~ + - ~ + - e 8x&7 r 872, 
and Eq. (1.1) takes the form 

2 02 
Ox07 e 2 ~ e OxSr I --~ ~ + D12 8y 2 ] 

82 [ / 8 2  2 82 1 82"~w~ c92w e 
+-ff-'y2 tD12 t'~'~-~x2 § "~ OxS-'----(7 + -~-~-~2~2 ] + D22-'~y2 ] = - f . (1.5) 

Substitution of (1.4) into (1.5) yields a recursively coupled system of equations for functions wn(x, y, 77). 
To construct an averaged equation,  it is necessary to determine only a few leading terms of the expansion. 
Setting to zero the coefficient of e-4,  we obtain the equation 

02 / 82w ~ x 

which implies that  w~ y, 77) = w~ y). The function wl(x, y, 7) is determined from the condition that  the 
coefficient of r vanish: 

82 (Dll02Wl '~ 82 [ 82w0\  oq 2 (Dl182w~ 
872 872 

Hence, it follows that  w 1 is independent  of q. Similarly, the equation for the function w2(x, y, 77) can be 
obtained from the requirement tha t  the  coefficient of e -2 vanish: 

82 / 82w2 \ 82 / 82wl \ 02 82w1"~ 02 [Dn 82w~ 82w0 "~ 
tDll-~-~.-2 ) § t2Dl l  0--~-~) _[_ 2.~_.__K_ (Dl l  .it. ~, .4. D12._~._2 ) 872 ~ oxo~ ~ 8p ] ~ 
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92 [. 02wO,~ 92 / 02w o \ 92 { 02w ~ 
+-fffiz2~Dll--~--2) + 40-~u [D66 ~--~--~ ) + -~v2~D12--~2] = 0 .  Or/ y \ or] y /  

Therefore, the function w2(x, y, 71) satisfies the relation 

92 (Dll 02w2 02w0 02wO"~ 
0~2_ -aw~ + D~T~ + D~-g~-V j =0. (1.6) 

We now substitute the function w e from formula (1.4) into the conjugation condition (1.2). Introducing the 
fast variable ~/, one obtains this condition in the form 

Dll  + - ~ + + D12 0.- ~ + a x a ~  ~ T~2 = - �9 

Equating coefficients with the same powers of e on the left and right sides of the last equality, we obtain the 
following relations for jumps in the functions w ~ w 1, and w2: 

02,~,o o,w, o2,,,o=1/2 f0~0 0wl 1 
D11T~2 =l/2='[wOl, D l l T ~ 2  + 2 9 1 1 0 - - ~  = a [ 0  x + 071J, 

0 ~ 2  02~o 02wo 1 = [0~2 0~11 (1.7) 
DII-~-~ + DII-~-~-~ + DI2-~-y~ J . :v~ "t-E-~ + 0~ J" 

It follows from Eq. (1.6) and the conjugation condition (1.7) that 

02W 2 02W 0 02W 0 
Dl1"~ 2 + Dl lTx  2 + 012 Ty 2 - rl~21(x,y) + ~2(x,y), 

where ~l(z)  and q~2(x) are unknown functions. 
The continuity of the deflection and transverse shear force at the interface implies that qo1(x, y) can be 

set equal to zero and the function ~2(x, y) has the form 

. (02~,, ~ 02~~  
So2(z,y) = 1 + - A l l  \ T x  2 + )q2-~-Y2 )" 

Here 1 1 

0 0 0 0 
Setting the coefficient of r in Eq. (1.5) equal to zero, we obtain the following averaged relations 

between the moments and curvatures: 

c~ 02w ~ a)u2 02w~ 
M~ = -  l + ,Xll Ox -----T + 1 +  .)~11 Ty 2 1' 

o.. ( )o. o I 
M~2 = - I + .A11 Ox --T + ~ + 1 + .A11 -~y2 j, 

a2wO 
Ml~ = -2A660-~y,  

md the averaged equation 

'Al l  ( 02~x2 __02] (02w0~ "~X2 02wO\ #'-~-y404W0 04W0 + A,2O-- ~ + A,2 O--~- ) + + 4A66 0x20y 2 = - f .  (1.8) 1 + 

2. Equation (1.8) retains the elliptic property of the initial equation (1.1). For small a, it is singularly 
~erturbed. Considering the limiting case of Eq. (1.8) f o r ,  --~ +0 and denoting the limit by u, we obtain the 
;quation 

509 



04u 04U 
It~'y4 + 4A66 Ox2Oy---------- ~ -- - f .  (2.1) 

Equation (2.1) is of a composi te  type with a family of real characteristics x = c o n s t  of multiplicity 2 and a 
pair of complex conjugate characteristics. Similar equations were studied, for example,  in [4]. We set w ~ = u s 
in Eq. (1.8) and formulate the  first boundary-value problem 

OQ Ou~ OQ u c' = O, On = 0. (2.2) 

One can readily prove that  a solution of the original problem (i.8) and (2.2) converges to a solution 
of the limiting problem. We now consider exact formulations. Let Q be a bounded  planar domain with 
a piecewise-smooth boundary  OQ. The following symmetric bilinear form is naturally associated with the 
boundary-value problem (1.8), (2.2): 

Q 

f 02u '~ 02v f + 
Q 

Obviously, expression (2.3) can be written as 

where 

02u a 02v \ 

- -  + 4A66 OxO-----y ~-x-~y) dx dy. (2.3) 

1 + a)~ll ~1(~", ~) + ~0( : , , ) ,  

: o2,,o ) ( o2v o2. . 
~176 = / \ - 5 ; :  + j \ o :  + dy, 

Q 

[ 02u a 02v 4A66~2U a 02v \ 
ao(ua'v) = / k It ~y2 0y2 "]" OxOy O-~y) dxdy" 

q 

Let f E L2(Q). The  boundary-value problem (1.8), (2.2) admits the variational formulation: Find a 
function u '~ E H~(Q) such that  

aa(u ~, v) = (f, v) (2.4) 

for any v E H2(Q). Here (f ,  v) is the scalar product  in L2(Q). It is known [5] that  the  function u a is determined 
from (2.4) uniquely. For a = +0, we obtain the bilinear symmetric form ao(u ~ v) and the corresponding 
quadratic form a0(u ~ u~ We introduce a Hilbert space V by supplementing the  set of functions of class 

(Ou'~ 2 u2)dxdy] U2 
+ \OyJ + (2.5) 

(2.6) 

C~(Q) by the norm 

(02u 2 (02u   :0u 2 
Q 

A function u ~ E V that  satisfies the integral identity 

a 0 ( : ,  v) = (:, v) 

for any v e V and f E L2(Q) is called a weak solution of the boundary-value problem for Eq. (2.1). For 
functions from V, the Poincar~ inequality [4] holds: 

( Ov "~ 2 
f v 2 dxdy ~ C f k'~x] dxdy. 
Q Q 
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A similar inequality is valid for the derivative with respect to y. (Here and below, the constants C with or 
without subscripts are independent of the functions.) Consequently, for v E C~(Q) ,  the semi-norm 

Ivl~ = ~ f [.\Oy2/ + \O-~yy] J dxdy 
Q 

is equivalent to norm (2.5). Furthermore, a unique function u ~ that is a weak solution of problem (2.6) exists. 
Indeed, for fixed f E L2(Q), the bilinear form (u ~ f )  defines a linear continuous functional on V. At the 
same time, the inequality ao(u ~ u ~ >1 Co lu~ >1 C1 [[u~ 2 holds. Here the positive constants Co and C1 are 
independent of u ~ Therefore, according to the Lax-Milgram lemma, there is a unique element u ~ E V such 
that ao(u ~ v) = (f ,  v) for any function v E V, and this is the desired solution. In addition, u~ y) satisfies 
the boundary conditions 

u~ OQ = O, Ou~ Oy OQ* = O. 

Here OQ* is the noncharacteristic part of the boundary. We now examine the convergence of u a to u ~ 
T h e o r e m .  As a --* +O, a weak solution of problem (1.8) and (2.1) converges to a weak solution of 

problem (2.6). 
Indeed, we have the chain of inequalities 

a~(u", : )  = a0(u ~ u ") + 

It follows from (2.7) that  

C~ 

I + Q:'~11 a~(u",u") = (/,:) ~< Ilfllollu'~llo ~ Ilfllollu"llv. (2.7) 

Here }lull0 denotes the norm in L2(Q). Estimate (2.8) implies that the sequence u a belongs to a bounded 
subset of the space V. Hence, from the sequence u a we can separate a slowly converging subsequence in V, for 
which we retain the adopted notation. It follows from the second of estimates (2.8) that for any v E C~(Q),  
the term with a in the integral identity (2.1) converges to zero. Indeed, for an arbitrary function from C~(Q),  
we have 

1-]-O:All [ /  ~,'-~-2-X 2 -[- )~12"~-~'y2 ) \0X2 -[-"~12 ~u2)dXy dy[ 
Q 

I O~u ~" . O~u '~ll l10% )~ 0%l  v ~  C3 0% )~ 0%1 
- 0 7 +  al - T: 1]0 0 < r 0 :  + 0 

Here the constants C and 6"3 are independent of the functions v and u ~'. The last inequality makes it possible 
to pass to the limit for the chosen subsequence in the integral identity (2.4). Thus, the limiting function 
satisfies the integral identity (2.6). Since the liming problem has a unique solution, the subsequence has the 
same limit. 

3. A similar convergence theorem can also be proved for a mixed problem where the deflection and 
slope are specified on one part  of the boundary and the moments and transverse shear forces on the other 
part. However, if the natural  boundary conditions are formulated for the limiting problem, a similar theorem 
cannot be proved, since in contrast to the elliptic case, the space of solutions of the homogeneous problem is 
infinite-dimensional. Inasmuch as the coefficients in Eq. (2.1) are constant, they can be set equal to unity by 
appropriate extension of the coordinates. We set w ~ = u and write Eq. (2.1) in the form 

0% 0% 
Oy----- ~ + Ox2Oy------- ~ - f .  (3.1) 

Let f = 0. The general solution of the homogeneous equation (3.1) has the form 
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where W(x,y)" is a harmonic function and qOl(X) and ~2(x) are arbitrary functions. We first consider a 
particular case where the domain is the upper half-plane: Q = {(x, y), y >/0}. The natural boundary conditions 
have the form 

OAu 
O2U (x, +0) = f2(x). (3.2) ~yy (x,+0) = f](x), Oy 2 

Here &,u is the Laplacian of the function u. We assume that fl and f2 have a compact support. Then, 
+~ 1/ 

~l(x)  = ~ fl(t)lx - t I dt, 

and W(x, y) is represented by the convolution: 

+oo 
1 

W(x, y) = ~ f K(x - t, y)f2(t) dt. 

Here the kernel K(x - t, y) is calculated from the formula 

K(x - t, y) = y In[(x - t) 2 + y2] + 2y - 2(x - t) arctan Y----~--. 
x - t  

Moreover, W(x, y) satisfies the boundary condition 

02W 
(x, +0) = f (x) 

and, hence, it is determined with accuracy up to the term ax + b, where a and b are arbitrary constants. The 
function qoz(x) cannot be determined from boundary condition (3.2); consequently, the solution space of the 
homogeneous problem is infinite-dimensional. If the domain Q is arbitrary, the natural boundary conditions 
have the form 

I cos(n, y) = f2(s). 0 0 u  = fl(s),  /xu ,OQ 0 
On Oy oQ 

Here f~(s) and f2(s) are specified functions of the arc length. The general solution of the homogeneous 
equation with homogeneous natural boundary conditions has the form u = dlx + d2y + ~p(x) and, therefore, 
it is determined with accuracy up to the arbitrary function q~(x). 
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